SOLUTION OF AN INVERSE PROBLEM OF
NONLINEAR HEAT CONDUCTION TO DETERMINE
THERMOPHYSICAL CHARACTERISTICS

K. G, Omel'chenko and V. G. Pchelkina UDC 526.24.02

A problem to determine the temperature dependence of the coefficient of heat conduction is
formulated on the basis of an analysis of the internal temperature field, A search method
permitting solution of the problem mentioned is proposed.

There is a large quantity of work devoted to the investigation of methodological questions associated
with the determination of the thermophysical characteristics of materials at high temperatures at this
time. As a rule, methods based on using exact and approximate solutions of a nonlinear heat-conduction
equation for particular cases are examined in these papers. The practical utilization of the mentioned
methods is related to the realization of stationary heating of the specimen of material under investigation,
monotonie heating [1], instantaneous or intensive heating to a given temperature [2, 3], which is quite
tedious and sometimes even unrealizable under laboratory conditions in practice. In this connection,
methods to determine the thermophysical characteristics [4-6], based on an analysis of the temperature
fields within the material under investigation by numerical solution of the inverse problem of nonlinear
heat conduction, which require no special conditions for conducting the experiment, become quite valuable.
A method is elucidated below for the determination of the coefficient of heat conduction as a function of the
temperature, on the basis of a numerical solution of the inverse problem of heat conduction using a re-
fined difference scheme and a special direct search method. An example of the use of the proposed method
on the basis of a numerical experiment is presented,

The problem of determining the thermophysical characteristics by means of experimentally mea~
sured temperature fields can be formulated as follows: The heat-propagation process is described by
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Fig. 1. Time change in the temperature: 1) u(o, t);
2) u1/2, t); 3)u(l, t).

Fig. 2. Comparison with the exact solution. 1) Exact
solution; a) obtained solution, linear interpolation;

b) obtained solution, quadratic interpolation; the
dashes denote the first approximation.
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the nonlinear equation of heat conduction
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The time change in the temperature fj{) is known (as a result of mea-
o~ o surements during the experiment) at several internal points x;, i =1,
2 § cg § g § 2, co., D3 0=xj=26. Itis required to determine the unknown func-
° So oo tion A (u) from the condition of the minimum of the functional
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where u(x;, t) is the temperature change at the pbint x; computed by
— o ® means of (1), The initial and boundary conditions needed to solve (1)
8 D o~ D .
@ 2 Rz 88 should be given, The temperature changes measured at the exireme
° ©cS e points or the true conditions of the experiment can be used as boundary
conditions if n = 3, The procedure for solving the problem is to assign
2 T 2. the form of the function A (u) a priori, to determine those variations
2 s 283 RE 6 A (u) which diminish the value of the functional (2), and to vary A (u)
S| ®ee =< in this direction until minJ is obtained. The values of the functional
are determined by numerical solution of the direct problem, i.e., Eq.
5 Em g5 (1) for a selected Afu). An implicit conservative difference scheme
T 8] 88 &8 recommended in [7] was used to solve the direct problem, However,
S| e e the supplementary coefficients a 1 ﬁl"i
| wg o E”_ ~ aj! u—u_, ’ 62‘-‘ — it U — 20 +uf
| &| 2383 ox Ax, ox® Axg
° °ee e-° were introduced to increase the accuracy in the approximating differ-
ence expressions for the derivatives du/6x and 6%u/8x%: The subscript
< T3 Y8 k refers to the partition in x, and j refers tot. The coefficients oﬂ;1
s | = i E 32 § and pig! are determined by means of the temperature values at points
of the mesh domain and are the ratio between the first- and second-
§ . order derivatives determined at five points by means of the Lagrange
E - § § g g g formulas [8] and the corresponding derivatives determined at two
2 h s oo SO points for the first, and at three points for the second, derivatives.
5 An analysis of the computations made showed that introduction of the
] coefficients mentioned is most effective for the case of large tempera-
f) . _ —_—o - o ture gradients., Given in Table 1 is a comparison between the results
< of numencal computations using an ordinary dlfference scheme (a]k
g 1, ;31 = 1) and using the proposed scheme (aji! =1, ,slk # 1) with
B the exact quasistationary solution u; of the problem with 2 moving
§ <3 L3 boundary [9]. ‘
a A specially developed search method is used to solve the prob-
g“ lem of minimizing the functional (2). The crux of the method is the
8 = e following. The whole range of temperature variation is partitioned
g PPN into m parts by the points upmin =y <uy <... <um =Umay. The
~ T. T T T values of the desired function A (uj) = A{ are to be determined. It is
E TE T assumed that the law of variation of A between the nodal points is given,
Eg Linear interpolation between two adjacent nodes and parabolic inter-
B polation between three nodes are used, Taken as the first approxima-

tion to the solution of the initial problem is A@) = A ) = const, The
search is accomplished as follows. Three constant values A1 <Ay < A3
are selected such that their corresponding values of the quality criterion
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(2) would satisfy the inequality
T () <V (o) << J (19

Assuming the dependence J(A) in the neighborhood can be represented by a parabola, we find Ay <A <34

which yields ;\0(1 in the neighborhood mentioned. Then, an analogous procedure is repeated in a smaller
neighborhood of the point min J(A) and so on until /\0(1 is obtained with a given accuracy. The successive
approximations are determined as follows. Let the (k— 1)-th approximation, i.e., A '1), )\Z(k“i), cees

A (&-1) be known. To determine the k-th approximation, a certain increment di = A %1)/(:1 (g is the scale)

is selected and the next increments of all the )\i(k'l) , starting with i = 0, are given successively:

LOMB = Q=D - dh, 20 MR =AA=D 4+ 432, 3. MR = Ak-D
The value which yields the minimal value of the quality criterion (2)
JOP, o AR, ML, D)

(k)

is selected as Ay '. The mentioned procedure is repeated until it turns out that /\i(k) = Ay &-1) after which
the scale q is increased and the next approximations are determined. The search is considered termin-
ated if the scale becomes greater than a given maximum quantity.

Presented below as an illustration of the proposed method is an example based on a numerical ex-
periment. Shown in dimensionless form in Fig, 1 is the time change in the temperature at the points x =
0, x=1/2, x =1, The temperature change at the point x = 1/2 has been obtained by numerical solution of
(1) for the case

u(x, 0)=0; w0 H=4 u(l,H=0; cyp=1;
A (u) = sin (6u -+ 0.4) - 1.5.

The results of solving the problem when using the criterion in the form (2') are shown in Fig. 2.

NOTATION

¢, specific heat; f, temperature at an internal point; J, functional; m, number of partitions in u;
n, number of temperature measurements; q, scale; t, time; u, temperature; uT, exact solution; x,
linear coordinate; «, correction coefficient for the first derivative; 3, correction coefficient for the
second derivative; v, specific gravity; 6, thickness; A, coefficient of heat conduction; 7\, constant
value of ». Bubscripts: i refers to partition in u; j refers to partition int; k refers to partition in x;
(k) refers to an approximation.
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